
 
 
 

Abstract— Meeting scheduling is an important routine task in many 
organizations.  The basic problem in meeting scheduling is to find a 
common free time for all participants of a meeting satisfying the given 
requirements.  It is a time-consuming, iterative and tedious task.  There 
exists several solutions for centralized calendar management and meeting 
scheduling, but they are of limited functionalities, not fully automatic and 
requests are static.  Most of the schedulers not considered change of 
participants, the distance between the places of the participants and the 
venues of meetings.  In this approach equivalent classes of persons, 
distance between the venue and places of participants with dynamic 
requests is considered to schedule meetings.  This approach performs 
better and effective for practical meeting scheduling. 
 
Index Terms— Meeting Scheduling, A*-Algorithm, Artificial Intelligence, 
Meeting Constraints, Office Automation. 

 

I.  INTRODUCTION 

MEETING scheduling is a member of the class of resource 
scheduling problems that is known to be computationally 
intractable [1], and hence requires heuristics to reduce the 
computational effort.  The timetable rearrangement problem in 
[1] is NP-Hard and has been shown that the feasibility 
problem is NP-Complete [2].  In general, all constraints are 
not considered in the processing of meeting scheduling.  Some 
interesting approaches in Artificial Intelligence focus on 
learning user preferences [3, 4, 5].  Sen and Durfee [6] deal 
with persons’ time as the primary resources.  The meeting 
scheduling problem is focused to reduce the failures by 
utilizing the cooperation and rescheduling strategies when 
there is no common time-slot [7].  The scheduler [1] uses 
heuristic for the computation of ρ(mi) from p(mi) and 
generates all solutions with common pruning technique, then 
chooses the optimal one.  The common pruning technique 
may not reduce the computation of some or many problem 
instances in finding an optimal solution by computing all 
solutions.  So, the concept of A*-Algorithm [8, 9, 10] is 
applied to choose the best probable node or branch among the 
available nodes or branches in the search tree.  This solution 
process obtains the optimal or near optimal solution quicker 
by selecting only one node (or branch) at each time of 
exploration.  That is, most of the branches of the search tree 
are pruned, a solution is obtained quicker even for larger 
problem instances without considering all possibilities. 
At any point of time, the participants may be on their way to 
attend a meeting, attending a meeting, returning to their 
hometown after attending a meeting or idle in their home 
stations.  In day-to-day life, travelling time of the participants 
is to be considered along with the duration of meetings for an 
effective schedule.  But the travelling time required for the 
participants before scheduling of meetings and minimum time 
  

required before cancelling of meetings so as to avoid the 
travel are not considered in the systems [1, 3, 4, 5, 6, 12, 13, 
14]. 
In this work, a new centralized meeting scheduler with the 
distance metric, that is, the travelling time required for the 
participants from their current places to the venues of the 
meetings with respect to the time of requests along with the 
duration of meetings, has been designed and implemented, 
using A*-Algorithm with dynamic requests for scheduling and 
rescheduling of meetings.  Equivalence classes of persons for 
substitution is used in A*-Algorithm to speed up the process 
and have flexibility in scheduling of more meetings.  
 

II. PROBLEM SPECIFICATION 
   Let n be a positive integer.  A timetable of n meetings is 
represented as 13-tuple T(n) = (P, Mn, Dm, �, h, t, p, w, a, d, f, 
�, �), where P = {1, 2, …, m} is a set of m persons; Mn = 
{m1, m2, …, mn} is a set of n meetings; Dm is a 2-D distance 
matrix of the m persons;  is a partial order on Mn; h(mi) is the 
host of the meeting mi; t(mi) is the time duration of meeting 
mi; p(mi) is a set of groups of persons such that exactly one 
person in each group is required to attend the meeting mi; 
w(mi) is the weight (or priority) of the meeting mi;  a(mi) is the 
time of request (or arrival) of meeting mi; d(mi) is the deadline 
at which meeting mi is to be scheduled; f(mi) is the time at 
which meeting mi is fixed; (mi)  is the starting time at which 
meeting mi is scheduled; and (mi)  is the set of attendants of 
meeting mi chosen from p(mi).  Further, the schedule also 
satisfies the following conditions:  
Let mi and mj be any two meetings.   
    DM1: No person attends more than one meeting 

simultaneously. 
    DM2:  If mi  mj, then mj starts after mi ends, as per the 

need of organizational requirements and in case 
some persons attending both meetings mi and mj. 

    DM3:  For each group g  p(mi), exactly one person can 
attend the meeting mi. 

    DM4:   mi can start at one of the time instances in w(mi). 
     DM5: The venue of the meeting mi is one of the 

participants’ sites. 
    DM6:  Each meeting mi should be scheduled at the earliest 

in one of the time intervals (a(mi)  + max 
{dist(h(mi),  p(mi))}, d(mi)). 

    DM7:  Scheduling and rescheduling of any meeting mi also 
should satisfy d(mi). 

  In a schedule T(n), the parameters �, t, p, a, d, Dm, h and w 
represent the input requirements of meetings, whereas �  and 
� represent a schedule of meetings that satisfies all the 
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       1    2    3    4    5    6    7    8 
 

1       0    1    2    3    4    3    2    1 
2       1    0    1    2    3    4    3    2 
3       2    1    0    1    2    3    4    3 
4       3    2    1    0    1    2    3    4 
5       4    3    2    1    0    1    2    3 
6       3    4    3    2    1    0    1    2 
7       2    3    4    3    2    1    0    1 
8       1    2    3    4    3    2    1    0 

   Fig. 2  Weighted Distance Matrix of venues 

Fig. 3 Graphical Representation of T(6) with DM 

Fig. 1 Graphical Representation of T(5) with DM 

requirements. The assignment of rooms to meetings can easily 
be incorporated into the schedule by considering rooms as 
pseudo-persons. 
In this model, meetings are scheduled among a given set of 
persons.  For any meeting, the person who proposes a meeting 
is called host of the meeting.  The persons who are invited to 
attend that meeting are called participants or invitees.  The 
invitees are considered for change of persons for most of the 
applications.  At any point of time a participant may act as a 
host or an invitee of a meeting, but not both. 
A.  Example 1 
   Consider an example of timetable T(5) of 5 meetings, shown 
in  Fig. 1.  That is, five meetings {m1, …, m5} are scheduled 
among eight persons {p1, …, p8} in a calendar of time 
intervals between 0 and 24.  The eight persons are represented 
in the rows where as the time intervals are represented in the 
columns.  Horizontal lines are used to represent the duration 
(or length) of meetings, and the names of the meetings written 
just above the horizontal lines.  For example, the persons {p2, 
p8} are assigned for m3 in (3, 5) and {p1, p3, p7} are assigned 
for m4 in (12, 15).  For any person pi, the interval between any 
two meetings represents the minimum time required to travel 
between the venues of two meetings. 
 
 
 

 
 
 
 
 
    
   
 
 
 
 

 The distance among the venues is shown in Fig. 2, and the 
corresponding input parameters for the Example 1 are given 
below. 

P = {1, 2, 3, 4, 5, 6, 7, 8}. 
M5 = {m1, m2, m3, m4, m5}. 
m1  m5  and  m2  m4. 
 
h(m1) = 2, h(m2) = 4, h(m3) = 7, h(m4) = 3, & h(m5) = 4. 
t(m1) = 2, t(m2) = 4, t(m3) = 3, t(m4) = 3 & t(m5) = 2. 
p(m1) = {{2,3}, {7,8}}, p(m2) = {{1},{2},{3},{4},{7},{8}}, 
p(m3) = {{2},{5},{6,7,8}}, p(m4) = {{1,2},{3,4},{6,7,8}}, & 
p(m5) = {{1,2},{3,4},{6,7}}. 

 
w(m1) = 3, w(m2) = 3, w(m3) = 4, w(m4) = 3, & w(m5) = 5. 
a(m1) = 0, a(m2) = 0, a(m3) = 1, a(m4) = 2, & a(m5) = 2. 
d(m1) = 16, d(m2) = 16, d(m3) = 20, d(m4) = 22, & d(m5) = 24. 
f(m1) = 0,  f(m2) = 0,  f(m3) = 1,  f(m4) = 2,  & f(m5) = 2. 

 
 (m1) = 3,  (m2) = 7,  (m3) = 14,  (m4) = 12, &  (m5) = 16. 
 (m1) = {2, 8},  (m2) = {1, 2, 3, 4, 7, 8},  (m3) = {2, 5, 7}, 
 (m4) = {1, 3, 6}, &  (m5) = {1, 3, 6}. 

 
   The timetable rearrangement problem is done dynamically.  
That is, as soon as a meeting request comes, the scheduler 
tries to schedule the meeting by considering the travelling 
distance between the host of the meeting request and the 
current places of the participants with respect to the time of 
request.  For instance, the input parameters required for the 
new timetable T(n+1) by rearrangement is defined as  

I1: A timetable T(n) = (P, Mn, Dm,, h, t, p, w, a, d, f,, ). 
I2: A partial order  on Mn+1 = Mn  {mn+1}. 
I3: t(mn+1), p(mn+1), w(mn+1), a(mn+1), and d(mn+1). 
I4: A set F ( Mn) of meetings whose start times are fixed.  

The meetings that have higher priorities than mn+1 are 
kept in the set F. 

B.  Example 2 
Consider an instance to schedule a new meeting m6 in 

Example1 with the following input parameters. 
I1:  T(5)  as in Example 1, shown in Fig. 1. 
I2:  m1  m5, and m2  m4. 
I3:  t(m6) =3,  p(m6) ={{1},{3, 4},{6}}, h(m6) = 6,        

a(m6) = 6, w(m6) = 1, & d(m6) = 16. 
I4:  F = {}. 

 

Fig. 3 shows an optimum timetable T(6) = (P, M6, Dm, , h, t, 

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1001-1006

1002



 
 
 

Fig. 5 SR on m3 with DM 

p, w, a, d, f, , ) by rescheduling of meetings in T(5) with a 
set of operations given in the next section, where (m4) = 19, 
(m5) = {2, 4, 7}, (m6) = 13 and (m6) = {1, 3, 6}.  The 
fixing of meeting m6 by rescheduling is explained in Section 4. 

 
III.  CENTRALIZED MEETING SCHEDULER WITH 

DISTANCE METRICS 
   In this model, six operations such as CP (Change of Person), 
XP (eXchange of Person), SL (Shift Left), SR (Shift Right), 
CSL (Continuous Shift Left) and CSR (Continuous Shift 
Right) are used to rearrange the scheduled meetings so as to 
schedule the current meeting request.  The rescheduling of 
meetings takes place if no free slots are available.  Based on 
these operations, heuristic value is determined.  The heuristic 
value will be the deciding factor for selecting the next node in 
the search tree expansion.  The method of A*-Algorithm is 
applied with this heuristic value for the generation of search 
tree.  This process will speed up the searching optimally. 
   Let mn+1 be the current meeting to be scheduled and p(mn+1) 
= {g1, g2, …, gr} be the set of groups of persons to be 
considered for scheduling mn+1.  Let (mn+1) would be the set 
of attendees for mn+1, that is a set of candidates to be chosen 
from p(mn+1) one person per group.  Further, let (x, x + t(mn+1)) 
be the current interval considered for scheduling the meeting 
mn+1.  These assumptions are used in the illustration of six 
operations, which are given in the following section. 
 
A. Rescheduling of Meetings with Distance Metrics 
   Consider Fig. 1 for the illustration of the rescheduling 
operations.  Let a(mn+1) and d(mn+1) be the arrival and 
deadline of meeting mn+1.  The earliest feasible time for 
scheduling the meeting mn+1 (i.e., the function, eft(mn+1)) and 
its feasible period are shown in Fig. 4.  If free slots for all 
persons of mn+1 is available in the feasible period, then the 
meeting mn+1 is scheduled, otherwise rescheduling operations 
for those meetings with the required persons in the feasible 
period will take place. 
 
 
 
 
  
 
 
 
 
 
  When a new meeting, say mn+1, is scheduled, if none of the 
slots is free in the feasible period of mn+1, then the set of six 
operations (CP, XP, SL, SR, CSL and CSR), at a time only 
one operation, is applied to reschedule the scheduled 
meetings out of the feasible period, and then the meeting mn+1 

is scheduled.  When these operations are applied for the 
generation of nodes of the search tree, the feasibility of 
scheduling meeting is verified with respect to the time of 

rescheduling.  The following assumptions are considered for 
rescheduling of meetings: 
 The processing time and communication time of events 

are not taken into account. 
 To cancel a meeting mi, it is required that the 

cancellation message should reach the attendants of mi, 
 (mi), before they start for venue of mi, otherwise the 
meeting mi is not cancelled. 

SL: Shifts a meeting horizontally to the left.  For each person 
pj  (mn+1) and each meeting mi  (x, x + t(mn+1)), if there is 
a free time interval (s, s + t(mi)) to the left of (x, x + t(mn+1)) 
such that s ≥ eft(mi) with respect to the time at which the 
operation SL is applied, no person in (mi) attends any 
meeting during (s, s + t(mi)), and there is enough time for the 
message about the change to reach (mi) before they leave for 
venue of mi, then send the message to (mi) and change the 
start time of mi to s. 
SR: Shifts a meeting horizontally to the right.  For each 
person pj  (mn+1) and each meeting mi  (x, x + t(mn+1)), if 
there is a free time interval (s, s + t(mi)) to the right of (x, x + 
t(mn+1)) such that s + t(mi) ≤ d(mi) with respect to the time at 
which the operation SR is applied, no person in (mi) attends 
any meeting during (s, s + t(mi)), and there is enough time for 
the message about the change to reach (mi) before they leave 
for venue of mi, then send the message to (mi) and change 
the start time of mi to s. 
   Consider Fig. 1 for the illustration of SR operation. For 
example, let us consider the SR of meeting m3 so as to make 
free slots for scheduling m6 in (14, 17).  The meeting m3 is 
shifted to the right for the persons in ρ(m3) = {2, 5, 6}from 
the time instance 14 to 17.  Now, the number of slots 
available for m6 is increased from one to two, shown in Fig. 
5. 
 

 
 
CP: Changes person vertically within a group.  This operation 
makes free slots for the persons (mn+1) in (x, x + t(mn+1)) by 
changing one person with another within the respective 
groups.  For each meeting mi  (x, x + t(mn+1)), if no person 
in (mi) except some person pj  (mi) attends mi and if there 
is a person pk in {a | a, pj  gr and gr  p(mi), pk ≠ pj} who 
does not attend any meeting during ((mi), (mi) + t(mi)), and 
both pj and pk satisfy the time constraints before and after the 
current meeting, then change the attendant pj of mi to pk.  The 

Fig. 4 Feasibility of scheduling meeting mn+1 

Time 

d(mn+1) 

              Earliest feasible time for mn+1 
            

Feasible period of scheduling for mn+1 

a(mn+1) 
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Fig. 7 CSR of m4 and m5 with DM 

Fig. 6 CP on m3 with DM 

operation CP m3 p6 p8, changes person p6 with person p8 for 
the meeting m3, is shown in Fig. 6. 
 

 
 
XP: Exchanges persons within a group on different meetings.  
This makes free slots for the current meeting by making 
changes diagonally.  That is, for any two persons pj, pk  gp 
in p(mi) and pj, pk  gq in p(mn) such that pj  (mi) and pk  
(mn), then swap pj and pk between (mi) and (mn) if pj is 
free in (x, x + t(mn)), pk is free in (x, x + t(mi)) and both pj and 
pk satisfy the constraints after the previous meeting and 
before the next meetings. 
CSL (Continuous Shift Left): Shifts the meetings in (x, x + 
t(mn+1)) horizontally to the left in order.  For each person pj  
(mn+1) and each meeting mi  (x, x + t(mn+1)), if there is a 
time interval (s, s + t(mi)) to the left and disjoint with (x, x + 
t(mn+1)) such that s ≥ eft(mi), no person in (mi) attends any 
meeting during (s, s + t(mi)), the message about the change to 
reach all of  (mi) before they leave for venue of mi and 
shifting the meetings in (s, s + t(mi)) to the left which are 
satisfying the constraints, then change the start time of mi to s 
and send the message to (mi). 
CSR (Continuous Shift Right): Shifts the meetings in (x, x + 
t(mn+1)) horizontally to the right in order.  For each person pj 
 (mn+1) and each meeting mi  (x, x + t(mn+1)), if there is a 
time interval (s, s + t(mi)) to the right and disjoint with (x, x + 
t(mn+1)) such that s + t(mi) ≤ d(mi), no person in (mi) attends 
any meeting during (s, s + t(mi)), the message about the 
change to reach all of  (mi) before they leave for venue of mi 
and shifting the meetings in (s, s + t(mi)) to the right which 
are satisfying the constraints, then change the start time of mi 

to s and send the message to (mi).  The CSR of meetings m4 
and m5 with reference to Fig. 1 is shown in Fig. 7. 
 

 
 

IV.  A*-ALGORITHM WITH DISTANCE METRICS 
   Scheduling of meetings in centralized meeting scheduling 
with distance metrics is done dynamically.  That is, when a 
meeting request arrives, the scheduler tries to schedule the 
meeting by satisfying the conditions along with the traveling 
distance between the host of the meeting request and the 
participants’ current positions is considered with respect to 
the time of request.  When a new meeting, say mn+1, is 
scheduled, if none of the slots is free in the feasible period, 
then the set of six operations is applied for generation of 
nodes of search tree to reschedule the scheduled meetings and 
then the new meeting mn+1 is fixed.  When these operations 
are applied at the time of generation, the feasibility of 
scheduling meeting with respect to the time of request is 
verified.  A*-Algorithm with rescheduling operations for the 
scheduler with distance metric, is given below. 
Algorithm Schedule(start-time(mn+1), deadline(mn+1),p(mn+1)) 
//start-time(mn+1) – a start time at which mn+1 could be 
//scheduled; deadline(mn+1) – before which mn+1 should be 
//scheduled; p(mn+1) – a set of  group of persons considered 
//for mn+1. 

1. Initialize the open-heap and the node-set. 
2. Create a search tree, G, starting with the root node s 

of the schedule T(n). 
3. Insert s into the open-heap and the node-set. 
4. While(answer is not found) 
5.       Begin 
6.             if(open-heap is empty) 
7.                   Print the error message and exit. 
8.             n  delete the root of the open-heap 
9.             if(n is a goal node) 
10.                  Schedule the meeting mn+1 and    

terminates. 
11. Generate a set M of successors which are 

satisfying the distance factor and are not in 
the node-set by applying the operations: CP, 
XP, SL, SR, CSL, and CSR on n; insert into 
the node-set. 

12. For each node in M, apply the heuristic 
function and establish a pointer to n. 

13. Insert the nodes of M into the open-heap 
according to their heuristic values. 

14.     End 
15. End Schedule 
 

A. Example 3 
   As an example of meeting scheduling with distance metric, 
scheduling of a new meeting, m6, may be considered with the 
root configuration, which is shown in Fig. 1.  To schedule the 
meeting m6, A*-Algorithm is applied with distance metric to 
the root configuration, T(5). 
   The request of m6 arrives at the time instance 6, so the 
earliest time at which m6 could be scheduled is calculated 
using the function eTimeIns(mi): 
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Fig. 8 Possibilities of slot (13, 16) 

Fig. 9 Search tree for m6 with DM 

- Solution 
- Heuristic value : cost 

eTimeIns(m6) = a(m6) + max {min {dist(h(m6), p1)},    min   
{dist(h(m6), p3), dist(h(m6), p4)}, min 
{dist(h(m6), p6)}} 

              = 6 + max {3, min {3, 2}, 0} 
                   = 9. 
   This means that m6 could be scheduled at the earliest time 
instance 9.  Since the dead line of the meeting m6, d(m6) = 16, 
the duration (9, 16) can be considered feasible duration for 
scheduling m6.  That is, m6 could be scheduled in one of the 
time instances {9, 10, …, 16}.  After computing the feasible 
duration of a meeting, the scheduler has three choices in 
terms of increasing complexities to proceed further.  That is, 
it has to look for (a) free time slots for all participants of the 
new meeting; (b) reschedule the scheduled meetings so as to 
find free time slots for the new meeting, or (c) cancel one or 
more meetings so as to schedule the new meeting.  Generally, 
it depends on the meeting request and the current status of the 
calendar. 
   Suppose that the scheduler decides to schedule the current 
meeting request m6 at the earliest time instance of the feasible 
duration.  In this case, the scheduler has to try from the time 
instance 9 one after another.  Since all of the participants of 
the meeting m6 are not free in the time interval (9, 12) and m2 
is already scheduled in that duration, the scheduler may decide 
to cancel the meeting m2 and schedule m6.  To cancel the 
meeting m2 at the time instance 6, ρ(m2) should not have left 
for h(m2) before  the time instance 6 from their current 
positions.  That is, if at least one of them in ρ(m2) left before 
the time instance 6, the meeting m2 could not be cancelled. 
   The earliest leaving time of ρ(m2) for m2 
     = min {start(m2) – min {dist (current place of pi, h(m2)), 
 dist(current place of pi, home(pi) + dist(home(pi),   

h(m2))), for p(m2) = {1, 2, 3, 4, 7, 8}}} 
        = min {7 – {3, 2, 1, 0, 3, 2}} = 4. 
   That is, the earliest time of leaving for ρ(m2) to m2 is 4, at 
least one of ρ(m2) would have left at the time instance 4.  So 
the meeting m2 is not cancelled to schedule the meeting m6 
and hence the scheduler decides to schedule m6 after m2, that 
is, at the time instance 11 onwards.  Since p(m6) = {{1}, {3, 
4}, {6}}, the possible start-time for m6 after m2 is 
   max {11 + dist(h(m2), h(m6)), min{11 + dist(h(m2), h(m6)),   

11 + dist(h(m2), h(m6))}, 0 + dist(home(m6), h(m6))} 
         = max {11 + 2, min {12, 12}, 0}  
         = 13. 
   So, the required time interval for scheduling m6 is reduced to 
(13, 16) from (9, 16).  For this time interval, there are four 
slots {(13, 16), (14, 17), (15, 18), and (16, 19)} of length 
three.  For these four slots, the root node with four branches 
for scheduling of m6 is given in Fig. 8, and the search tree is 
shown in Fig. 9.  The node numbers are given at the left of the 
nodes.  The heuristic values of the nodes (or branches) and 
their costs are given as (heuristic-value:cost) at the right side 
of each node.  All four branches have the same heuristic 
value, 1.  Here any branch can be taken for expansion of the 
search tree.  The branch could be the first one or any one by 
random selection.  Assume that the first slot, (13, 16) is 

chosen for expansion.    The edges of the search tree are 
provided with the operations applied in A*-Algorithm.  The 
node-id of the root is 0 and the expanded nodes are given 
node-ids from 1 onwards. 
 
 
 
 

 
 

 
   
 The operations applied for rescheduling of meetings can be 
divided into two sets.  They are relevant-set and common-set 
of operations.  Relevant-set operations are applied to the 
meetings and the participants of the meetings that are 
scheduled in a slot where the current request of a meeting is to 
be scheduled.  The relevant-set operations increase the 
heuristic values of the children rather than the parent.  
Sometimes the relevant set operations may reduce the heuristic 
value of the children but increase the heuristic value of the 
grand children and their children and so on.  The common-set 
includes all operations, that is, relevant-set and other 
operations applied in a search tree.  For example, the relevant-
set operations can be applied for shorter solution path, 
minimum cost path, solutions with minimum number of nodes 
generation and solutions to be obtained with simple operations. 
   Fig. 9 shows that there are 14 nodes in the search tree.  The 
nodes are given numbers according to the levels.  The root 
node is explored with the common-set operations.  Six nodes 
are generated in the level one, numbered 1 to 6.  The nodes 
with node-ids 1, 4 and 6 have heuristic value 2.  Now the 
scheduler has to decide which node to choose to expand the 
search tree further.  Since all three nodes have the same 
heuristic value, the scheduler selects the node 1 as the current 
node for expansion, as it has the minimum cost. 
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Fig. 10 Search tree for m6 with relevant set of operations 

When node 1 is explored, two nodes with node-ids 7 and 8 are 
generated in the second level.  As the node 7 is the solution 
node, the expansion of the search tree is terminated.  So, eight 
nodes are generated in Fig. 9 when the common-set of 
operation is applied. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 10 shows a search tree for the same problem as with 
Fig. 9 considering the relevant-set operations.  At the level 1, 
nodes 1 and 2 are generated from the root node 0.  Both nodes 
have heuristic value 2, but the cost of the nodes is different.  
At this point, A*-Algorithm chooses node 1 for expansion, 
and generates node 3.  Since node 3 is a solution node, the 
process is terminated.  So, in this search tree only three nodes 
are generated, two nodes at the first level and one node in the 
second level.  Having less number of nodes generated, the 
processing time as well as the overhead involved in the 
generation of the search tree is reduced.  Thus the relevant-set 
operations save a considerable amount of memory as well 
processing time, compared to the common-set of operations. 
 

V.  RESULTS 
   The simulation of the meeting scheduler with distance 
metrics using A*-Algorithm was carried out  and the 
performance was compared by considering various 
combinations of parameters from different sets like distance 
matrix, number of slots in a calendar, number of persons, 
maximum number of groups, maximum number of persons in 
groups, maximum duration of meetings, and maximum 
number of time instances (that is, number of time instances 
between the arrival time and the deadline of the meeting 
request). 
   It was observed that the participants of a meeting are 
required not only be available during the time of meeting t(mi) 
but also for the time of travel from their current place to the 
venue of that particular meeting (ttra).  So, the time required 
for a meeting mi from the participants’ view is that ttra + t(mi).  
Since ttra + t(mi) ≥ t(mi) for all mi, the number of meetings 
scheduled with distance metrics is less than scheduled 
meetings without distance metric.  Further, for any meeting 
mi, the constraints before and after mi are to be checked for all 
ρ(mi), so, the processing time of the scheduler with distance 
metric is more than that of without distance metrics. 
 

VI.  CONCLUSION 
   Centralized meeting scheduling with distance metrics 
satisfies the dynamic requests of meeting and timing 
requirements before scheduling and cancellation of meetings 
with A*-Algorithm.  This approach for the meeting 
scheduling with distance metrics using A*-Algorithm gives 
solutions with less memory requirements and processing time 
as the scheduler chooses only one node or branch at each level 
of the search tree during expansion.  The number of meetings 
scheduled with distance metrics is less than that of scheduling 
of meetings without distance metrics.  Further, the overheads 
involved in the processing time of the scheduler with distance 
metrics are little more than that of without distance metrics. 
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