

Abstract— Meeting scheduling is an important routine task in many
organizations. The basic problem in meeting scheduling is to find a
common free time for all participants of a meeting satisfying the given
requirements. It is a time-consuming, iterative and tedious task. There
exists several solutions for centralized calendar management and meeting
scheduling, but they are of limited functionalities, not fully automatic and
requests are static. Most of the schedulers not considered change of
participants, the distance between the places of the participants and the
venues of meetings. In this approach equivalent classes of persons,
distance between the venue and places of participants with dynamic
requests is considered to schedule meetings. This approach performs
better and effective for practical meeting scheduling.

Index Terms— Meeting Scheduling, A*-Algorithm, Artificial Intelligence,
Meeting Constraints, Office Automation.

I. INTRODUCTION

MEETING scheduling is a member of the class of resource
scheduling problems that is known to be computationally
intractable [1], and hence requires heuristics to reduce the
computational effort. The timetable rearrangement problem in
[1] is NP-Hard and has been shown that the feasibility
problem is NP-Complete [2]. In general, all constraints are
not considered in the processing of meeting scheduling. Some
interesting approaches in Artificial Intelligence focus on
learning user preferences [3, 4, 5]. Sen and Durfee [6] deal
with persons’ time as the primary resources. The meeting
scheduling problem is focused to reduce the failures by
utilizing the cooperation and rescheduling strategies when
there is no common time-slot [7]. The scheduler [1] uses
heuristic for the computation of ρ(mi) from p(mi) and
generates all solutions with common pruning technique, then
chooses the optimal one. The common pruning technique
may not reduce the computation of some or many problem
instances in finding an optimal solution by computing all
solutions. So, the concept of A*-Algorithm [8, 9, 10] is
applied to choose the best probable node or branch among the
available nodes or branches in the search tree. This solution
process obtains the optimal or near optimal solution quicker
by selecting only one node (or branch) at each time of
exploration. That is, most of the branches of the search tree
are pruned, a solution is obtained quicker even for larger
problem instances without considering all possibilities.
At any point of time, the participants may be on their way to
attend a meeting, attending a meeting, returning to their
hometown after attending a meeting or idle in their home
stations. In day-to-day life, travelling time of the participants
is to be considered along with the duration of meetings for an
effective schedule. But the travelling time required for the
participants before scheduling of meetings and minimum time

required before cancelling of meetings so as to avoid the
travel are not considered in the systems [1, 3, 4, 5, 6, 12, 13,
14].
In this work, a new centralized meeting scheduler with the
distance metric, that is, the travelling time required for the
participants from their current places to the venues of the
meetings with respect to the time of requests along with the
duration of meetings, has been designed and implemented,
using A*-Algorithm with dynamic requests for scheduling and
rescheduling of meetings. Equivalence classes of persons for
substitution is used in A*-Algorithm to speed up the process
and have flexibility in scheduling of more meetings.

II. PROBLEM SPECIFICATION
 Let n be a positive integer. A timetable of n meetings is
represented as 13-tuple T(n) = (P, Mn, Dm, �, h, t, p, w, a, d, f,
�, �), where P = {1, 2, …, m} is a set of m persons; Mn =
{m1, m2, …, mn} is a set of n meetings; Dm is a 2-D distance
matrix of the m persons;  is a partial order on Mn; h(mi) is the
host of the meeting mi; t(mi) is the time duration of meeting
mi; p(mi) is a set of groups of persons such that exactly one
person in each group is required to attend the meeting mi;
w(mi) is the weight (or priority) of the meeting mi; a(mi) is the
time of request (or arrival) of meeting mi; d(mi) is the deadline
at which meeting mi is to be scheduled; f(mi) is the time at
which meeting mi is fixed; (mi) is the starting time at which
meeting mi is scheduled; and (mi) is the set of attendants of
meeting mi chosen from p(mi). Further, the schedule also
satisfies the following conditions:
Let mi and mj be any two meetings.
 DM1: No person attends more than one meeting

simultaneously.
 DM2: If mi  mj, then mj starts after mi ends, as per the

need of organizational requirements and in case
some persons attending both meetings mi and mj.

 DM3: For each group g  p(mi), exactly one person can
attend the meeting mi.

 DM4: mi can start at one of the time instances in w(mi).
 DM5: The venue of the meeting mi is one of the

participants’ sites.
 DM6: Each meeting mi should be scheduled at the earliest

in one of the time intervals (a(mi) + max
{dist(h(mi), p(mi))}, d(mi)).

 DM7: Scheduling and rescheduling of any meeting mi also
should satisfy d(mi).

 In a schedule T(n), the parameters �, t, p, a, d, Dm, h and w
represent the input requirements of meetings, whereas � and
� represent a schedule of meetings that satisfies all the

A Design of Centralized Meeting Scheduler
with Distance Metrics

M. Sugumaran
Department of Computer Science and Engineering ,Pondicherry Engineering College, Puducherry, India.

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1001-1006

1001

 1 2 3 4 5 6 7 8

1 0 1 2 3 4 3 2 1
2 1 0 1 2 3 4 3 2
3 2 1 0 1 2 3 4 3
4 3 2 1 0 1 2 3 4
5 4 3 2 1 0 1 2 3
6 3 4 3 2 1 0 1 2
7 2 3 4 3 2 1 0 1
8 1 2 3 4 3 2 1 0

 Fig. 2 Weighted Distance Matrix of venues

Fig. 3 Graphical Representation of T(6) with DM

Fig. 1 Graphical Representation of T(5) with DM

requirements. The assignment of rooms to meetings can easily
be incorporated into the schedule by considering rooms as
pseudo-persons.
In this model, meetings are scheduled among a given set of
persons. For any meeting, the person who proposes a meeting
is called host of the meeting. The persons who are invited to
attend that meeting are called participants or invitees. The
invitees are considered for change of persons for most of the
applications. At any point of time a participant may act as a
host or an invitee of a meeting, but not both.
A. Example 1
 Consider an example of timetable T(5) of 5 meetings, shown
in Fig. 1. That is, five meetings {m1, …, m5} are scheduled
among eight persons {p1, …, p8} in a calendar of time
intervals between 0 and 24. The eight persons are represented
in the rows where as the time intervals are represented in the
columns. Horizontal lines are used to represent the duration
(or length) of meetings, and the names of the meetings written
just above the horizontal lines. For example, the persons {p2,
p8} are assigned for m3 in (3, 5) and {p1, p3, p7} are assigned
for m4 in (12, 15). For any person pi, the interval between any
two meetings represents the minimum time required to travel
between the venues of two meetings.

 The distance among the venues is shown in Fig. 2, and the
corresponding input parameters for the Example 1 are given
below.

P = {1, 2, 3, 4, 5, 6, 7, 8}.
M5 = {m1, m2, m3, m4, m5}.
m1  m5 and m2  m4.

h(m1) = 2, h(m2) = 4, h(m3) = 7, h(m4) = 3, & h(m5) = 4.
t(m1) = 2, t(m2) = 4, t(m3) = 3, t(m4) = 3 & t(m5) = 2.
p(m1) = {{2,3}, {7,8}}, p(m2) = {{1},{2},{3},{4},{7},{8}},
p(m3) = {{2},{5},{6,7,8}}, p(m4) = {{1,2},{3,4},{6,7,8}}, &
p(m5) = {{1,2},{3,4},{6,7}}.

w(m1) = 3, w(m2) = 3, w(m3) = 4, w(m4) = 3, & w(m5) = 5.
a(m1) = 0, a(m2) = 0, a(m3) = 1, a(m4) = 2, & a(m5) = 2.
d(m1) = 16, d(m2) = 16, d(m3) = 20, d(m4) = 22, & d(m5) = 24.
f(m1) = 0, f(m2) = 0, f(m3) = 1, f(m4) = 2, & f(m5) = 2.

 (m1) = 3,  (m2) = 7,  (m3) = 14,  (m4) = 12, &  (m5) = 16.
 (m1) = {2, 8},  (m2) = {1, 2, 3, 4, 7, 8},  (m3) = {2, 5, 7},
 (m4) = {1, 3, 6}, &  (m5) = {1, 3, 6}.

 The timetable rearrangement problem is done dynamically.
That is, as soon as a meeting request comes, the scheduler
tries to schedule the meeting by considering the travelling
distance between the host of the meeting request and the
current places of the participants with respect to the time of
request. For instance, the input parameters required for the
new timetable T(n+1) by rearrangement is defined as

I1: A timetable T(n) = (P, Mn, Dm,, h, t, p, w, a, d, f,, ).
I2: A partial order  on Mn+1 = Mn  {mn+1}.
I3: t(mn+1), p(mn+1), w(mn+1), a(mn+1), and d(mn+1).
I4: A set F ( Mn) of meetings whose start times are fixed.

The meetings that have higher priorities than mn+1 are
kept in the set F.

B. Example 2
Consider an instance to schedule a new meeting m6 in

Example1 with the following input parameters.
I1: T(5) as in Example 1, shown in Fig. 1.
I2: m1  m5, and m2  m4.
I3: t(m6) =3, p(m6) ={{1},{3, 4},{6}}, h(m6) = 6,

a(m6) = 6, w(m6) = 1, & d(m6) = 16.
I4: F = {}.

Fig. 3 shows an optimum timetable T(6) = (P, M6, Dm, , h, t,

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1001-1006

1002

Fig. 5 SR on m3 with DM

p, w, a, d, f, , ) by rescheduling of meetings in T(5) with a
set of operations given in the next section, where (m4) = 19,
(m5) = {2, 4, 7}, (m6) = 13 and (m6) = {1, 3, 6}. The
fixing of meeting m6 by rescheduling is explained in Section 4.

III. CENTRALIZED MEETING SCHEDULER WITH

DISTANCE METRICS
 In this model, six operations such as CP (Change of Person),
XP (eXchange of Person), SL (Shift Left), SR (Shift Right),
CSL (Continuous Shift Left) and CSR (Continuous Shift
Right) are used to rearrange the scheduled meetings so as to
schedule the current meeting request. The rescheduling of
meetings takes place if no free slots are available. Based on
these operations, heuristic value is determined. The heuristic
value will be the deciding factor for selecting the next node in
the search tree expansion. The method of A*-Algorithm is
applied with this heuristic value for the generation of search
tree. This process will speed up the searching optimally.
 Let mn+1 be the current meeting to be scheduled and p(mn+1)
= {g1, g2, …, gr} be the set of groups of persons to be
considered for scheduling mn+1. Let (mn+1) would be the set
of attendees for mn+1, that is a set of candidates to be chosen
from p(mn+1) one person per group. Further, let (x, x + t(mn+1))
be the current interval considered for scheduling the meeting
mn+1. These assumptions are used in the illustration of six
operations, which are given in the following section.

A. Rescheduling of Meetings with Distance Metrics
 Consider Fig. 1 for the illustration of the rescheduling
operations. Let a(mn+1) and d(mn+1) be the arrival and
deadline of meeting mn+1. The earliest feasible time for
scheduling the meeting mn+1 (i.e., the function, eft(mn+1)) and
its feasible period are shown in Fig. 4. If free slots for all
persons of mn+1 is available in the feasible period, then the
meeting mn+1 is scheduled, otherwise rescheduling operations
for those meetings with the required persons in the feasible
period will take place.

 When a new meeting, say mn+1, is scheduled, if none of the
slots is free in the feasible period of mn+1, then the set of six
operations (CP, XP, SL, SR, CSL and CSR), at a time only
one operation, is applied to reschedule the scheduled
meetings out of the feasible period, and then the meeting mn+1

is scheduled. When these operations are applied for the
generation of nodes of the search tree, the feasibility of
scheduling meeting is verified with respect to the time of

rescheduling. The following assumptions are considered for
rescheduling of meetings:
 The processing time and communication time of events

are not taken into account.
 To cancel a meeting mi, it is required that the

cancellation message should reach the attendants of mi,
 (mi), before they start for venue of mi, otherwise the
meeting mi is not cancelled.

SL: Shifts a meeting horizontally to the left. For each person
pj  (mn+1) and each meeting mi  (x, x + t(mn+1)), if there is
a free time interval (s, s + t(mi)) to the left of (x, x + t(mn+1))
such that s ≥ eft(mi) with respect to the time at which the
operation SL is applied, no person in (mi) attends any
meeting during (s, s + t(mi)), and there is enough time for the
message about the change to reach (mi) before they leave for
venue of mi, then send the message to (mi) and change the
start time of mi to s.
SR: Shifts a meeting horizontally to the right. For each
person pj  (mn+1) and each meeting mi  (x, x + t(mn+1)), if
there is a free time interval (s, s + t(mi)) to the right of (x, x +
t(mn+1)) such that s + t(mi) ≤ d(mi) with respect to the time at
which the operation SR is applied, no person in (mi) attends
any meeting during (s, s + t(mi)), and there is enough time for
the message about the change to reach (mi) before they leave
for venue of mi, then send the message to (mi) and change
the start time of mi to s.
 Consider Fig. 1 for the illustration of SR operation. For
example, let us consider the SR of meeting m3 so as to make
free slots for scheduling m6 in (14, 17). The meeting m3 is
shifted to the right for the persons in ρ(m3) = {2, 5, 6}from
the time instance 14 to 17. Now, the number of slots
available for m6 is increased from one to two, shown in Fig.
5.

CP: Changes person vertically within a group. This operation
makes free slots for the persons (mn+1) in (x, x + t(mn+1)) by
changing one person with another within the respective
groups. For each meeting mi  (x, x + t(mn+1)), if no person
in (mi) except some person pj  (mi) attends mi and if there
is a person pk in {a | a, pj  gr and gr  p(mi), pk ≠ pj} who
does not attend any meeting during ((mi), (mi) + t(mi)), and
both pj and pk satisfy the time constraints before and after the
current meeting, then change the attendant pj of mi to pk. The

Fig. 4 Feasibility of scheduling meeting mn+1

Time

d(mn+1)

 Earliest feasible time for mn+1

Feasible period of scheduling for mn+1

a(mn+1)

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1001-1006

1003

Fig. 7 CSR of m4 and m5 with DM

Fig. 6 CP on m3 with DM

operation CP m3 p6 p8, changes person p6 with person p8 for
the meeting m3, is shown in Fig. 6.

XP: Exchanges persons within a group on different meetings.
This makes free slots for the current meeting by making
changes diagonally. That is, for any two persons pj, pk  gp
in p(mi) and pj, pk  gq in p(mn) such that pj  (mi) and pk 
(mn), then swap pj and pk between (mi) and (mn) if pj is
free in (x, x + t(mn)), pk is free in (x, x + t(mi)) and both pj and
pk satisfy the constraints after the previous meeting and
before the next meetings.
CSL (Continuous Shift Left): Shifts the meetings in (x, x +
t(mn+1)) horizontally to the left in order. For each person pj 
(mn+1) and each meeting mi  (x, x + t(mn+1)), if there is a
time interval (s, s + t(mi)) to the left and disjoint with (x, x +
t(mn+1)) such that s ≥ eft(mi), no person in (mi) attends any
meeting during (s, s + t(mi)), the message about the change to
reach all of (mi) before they leave for venue of mi and
shifting the meetings in (s, s + t(mi)) to the left which are
satisfying the constraints, then change the start time of mi to s
and send the message to (mi).
CSR (Continuous Shift Right): Shifts the meetings in (x, x +
t(mn+1)) horizontally to the right in order. For each person pj
 (mn+1) and each meeting mi  (x, x + t(mn+1)), if there is a
time interval (s, s + t(mi)) to the right and disjoint with (x, x +
t(mn+1)) such that s + t(mi) ≤ d(mi), no person in (mi) attends
any meeting during (s, s + t(mi)), the message about the
change to reach all of (mi) before they leave for venue of mi
and shifting the meetings in (s, s + t(mi)) to the right which
are satisfying the constraints, then change the start time of mi

to s and send the message to (mi). The CSR of meetings m4
and m5 with reference to Fig. 1 is shown in Fig. 7.

IV. A*-ALGORITHM WITH DISTANCE METRICS
 Scheduling of meetings in centralized meeting scheduling
with distance metrics is done dynamically. That is, when a
meeting request arrives, the scheduler tries to schedule the
meeting by satisfying the conditions along with the traveling
distance between the host of the meeting request and the
participants’ current positions is considered with respect to
the time of request. When a new meeting, say mn+1, is
scheduled, if none of the slots is free in the feasible period,
then the set of six operations is applied for generation of
nodes of search tree to reschedule the scheduled meetings and
then the new meeting mn+1 is fixed. When these operations
are applied at the time of generation, the feasibility of
scheduling meeting with respect to the time of request is
verified. A*-Algorithm with rescheduling operations for the
scheduler with distance metric, is given below.
Algorithm Schedule(start-time(mn+1), deadline(mn+1),p(mn+1))
//start-time(mn+1) – a start time at which mn+1 could be
//scheduled; deadline(mn+1) – before which mn+1 should be
//scheduled; p(mn+1) – a set of group of persons considered
//for mn+1.

1. Initialize the open-heap and the node-set.
2. Create a search tree, G, starting with the root node s

of the schedule T(n).
3. Insert s into the open-heap and the node-set.
4. While(answer is not found)
5. Begin
6. if(open-heap is empty)
7. Print the error message and exit.
8. n  delete the root of the open-heap
9. if(n is a goal node)
10. Schedule the meeting mn+1 and

terminates.
11. Generate a set M of successors which are

satisfying the distance factor and are not in
the node-set by applying the operations: CP,
XP, SL, SR, CSL, and CSR on n; insert into
the node-set.

12. For each node in M, apply the heuristic
function and establish a pointer to n.

13. Insert the nodes of M into the open-heap
according to their heuristic values.

14. End
15. End Schedule

A. Example 3
 As an example of meeting scheduling with distance metric,
scheduling of a new meeting, m6, may be considered with the
root configuration, which is shown in Fig. 1. To schedule the
meeting m6, A*-Algorithm is applied with distance metric to
the root configuration, T(5).
 The request of m6 arrives at the time instance 6, so the
earliest time at which m6 could be scheduled is calculated
using the function eTimeIns(mi):

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1001-1006

1004

Fig. 8 Possibilities of slot (13, 16)

Fig. 9 Search tree for m6 with DM

- Solution
- Heuristic value : cost

eTimeIns(m6) = a(m6) + max {min {dist(h(m6), p1)}, min
{dist(h(m6), p3), dist(h(m6), p4)}, min
{dist(h(m6), p6)}}

 = 6 + max {3, min {3, 2}, 0}
 = 9.
 This means that m6 could be scheduled at the earliest time
instance 9. Since the dead line of the meeting m6, d(m6) = 16,
the duration (9, 16) can be considered feasible duration for
scheduling m6. That is, m6 could be scheduled in one of the
time instances {9, 10, …, 16}. After computing the feasible
duration of a meeting, the scheduler has three choices in
terms of increasing complexities to proceed further. That is,
it has to look for (a) free time slots for all participants of the
new meeting; (b) reschedule the scheduled meetings so as to
find free time slots for the new meeting, or (c) cancel one or
more meetings so as to schedule the new meeting. Generally,
it depends on the meeting request and the current status of the
calendar.
 Suppose that the scheduler decides to schedule the current
meeting request m6 at the earliest time instance of the feasible
duration. In this case, the scheduler has to try from the time
instance 9 one after another. Since all of the participants of
the meeting m6 are not free in the time interval (9, 12) and m2
is already scheduled in that duration, the scheduler may decide
to cancel the meeting m2 and schedule m6. To cancel the
meeting m2 at the time instance 6, ρ(m2) should not have left
for h(m2) before the time instance 6 from their current
positions. That is, if at least one of them in ρ(m2) left before
the time instance 6, the meeting m2 could not be cancelled.
 The earliest leaving time of ρ(m2) for m2
 = min {start(m2) – min {dist (current place of pi, h(m2)),
 dist(current place of pi, home(pi) + dist(home(pi),

h(m2))), for p(m2) = {1, 2, 3, 4, 7, 8}}}
 = min {7 – {3, 2, 1, 0, 3, 2}} = 4.
 That is, the earliest time of leaving for ρ(m2) to m2 is 4, at
least one of ρ(m2) would have left at the time instance 4. So
the meeting m2 is not cancelled to schedule the meeting m6
and hence the scheduler decides to schedule m6 after m2, that
is, at the time instance 11 onwards. Since p(m6) = {{1}, {3,
4}, {6}}, the possible start-time for m6 after m2 is
 max {11 + dist(h(m2), h(m6)), min{11 + dist(h(m2), h(m6)),

11 + dist(h(m2), h(m6))}, 0 + dist(home(m6), h(m6))}
 = max {11 + 2, min {12, 12}, 0}
 = 13.
 So, the required time interval for scheduling m6 is reduced to
(13, 16) from (9, 16). For this time interval, there are four
slots {(13, 16), (14, 17), (15, 18), and (16, 19)} of length
three. For these four slots, the root node with four branches
for scheduling of m6 is given in Fig. 8, and the search tree is
shown in Fig. 9. The node numbers are given at the left of the
nodes. The heuristic values of the nodes (or branches) and
their costs are given as (heuristic-value:cost) at the right side
of each node. All four branches have the same heuristic
value, 1. Here any branch can be taken for expansion of the
search tree. The branch could be the first one or any one by
random selection. Assume that the first slot, (13, 16) is

chosen for expansion. The edges of the search tree are
provided with the operations applied in A*-Algorithm. The
node-id of the root is 0 and the expanded nodes are given
node-ids from 1 onwards.

 The operations applied for rescheduling of meetings can be
divided into two sets. They are relevant-set and common-set
of operations. Relevant-set operations are applied to the
meetings and the participants of the meetings that are
scheduled in a slot where the current request of a meeting is to
be scheduled. The relevant-set operations increase the
heuristic values of the children rather than the parent.
Sometimes the relevant set operations may reduce the heuristic
value of the children but increase the heuristic value of the
grand children and their children and so on. The common-set
includes all operations, that is, relevant-set and other
operations applied in a search tree. For example, the relevant-
set operations can be applied for shorter solution path,
minimum cost path, solutions with minimum number of nodes
generation and solutions to be obtained with simple operations.
 Fig. 9 shows that there are 14 nodes in the search tree. The
nodes are given numbers according to the levels. The root
node is explored with the common-set operations. Six nodes
are generated in the level one, numbered 1 to 6. The nodes
with node-ids 1, 4 and 6 have heuristic value 2. Now the
scheduler has to decide which node to choose to expand the
search tree further. Since all three nodes have the same
heuristic value, the scheduler selects the node 1 as the current
node for expansion, as it has the minimum cost.

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1001-1006

1005

Fig. 10 Search tree for m6 with relevant set of operations

When node 1 is explored, two nodes with node-ids 7 and 8 are
generated in the second level. As the node 7 is the solution
node, the expansion of the search tree is terminated. So, eight
nodes are generated in Fig. 9 when the common-set of
operation is applied.

Fig. 10 shows a search tree for the same problem as with
Fig. 9 considering the relevant-set operations. At the level 1,
nodes 1 and 2 are generated from the root node 0. Both nodes
have heuristic value 2, but the cost of the nodes is different.
At this point, A*-Algorithm chooses node 1 for expansion,
and generates node 3. Since node 3 is a solution node, the
process is terminated. So, in this search tree only three nodes
are generated, two nodes at the first level and one node in the
second level. Having less number of nodes generated, the
processing time as well as the overhead involved in the
generation of the search tree is reduced. Thus the relevant-set
operations save a considerable amount of memory as well
processing time, compared to the common-set of operations.

V. RESULTS
 The simulation of the meeting scheduler with distance
metrics using A*-Algorithm was carried out and the
performance was compared by considering various
combinations of parameters from different sets like distance
matrix, number of slots in a calendar, number of persons,
maximum number of groups, maximum number of persons in
groups, maximum duration of meetings, and maximum
number of time instances (that is, number of time instances
between the arrival time and the deadline of the meeting
request).
 It was observed that the participants of a meeting are
required not only be available during the time of meeting t(mi)
but also for the time of travel from their current place to the
venue of that particular meeting (ttra). So, the time required
for a meeting mi from the participants’ view is that ttra + t(mi).
Since ttra + t(mi) ≥ t(mi) for all mi, the number of meetings
scheduled with distance metrics is less than scheduled
meetings without distance metric. Further, for any meeting
mi, the constraints before and after mi are to be checked for all
ρ(mi), so, the processing time of the scheduler with distance
metric is more than that of without distance metrics.

VI. CONCLUSION
 Centralized meeting scheduling with distance metrics
satisfies the dynamic requests of meeting and timing
requirements before scheduling and cancellation of meetings
with A*-Algorithm. This approach for the meeting
scheduling with distance metrics using A*-Algorithm gives
solutions with less memory requirements and processing time
as the scheduler chooses only one node or branch at each level
of the search tree during expansion. The number of meetings
scheduled with distance metrics is less than that of scheduling
of meetings without distance metrics. Further, the overheads
involved in the processing time of the scheduler with distance
metrics are little more than that of without distance metrics.

REFERENCES

[1] Sugihara K., Kikuno T. and Yoshida N. (1989), “A Meeting Scheduler
for Office Automation”, IEEE Transactions on Software Engineering,
Vol.15, No.10, pp. 1141-1146.

[2] Garey M.R. and Johnson D.S. (1979), “Computers and Intractability: A
Guide to the Theory of NP-Completeness”, San Francisco, CA:
Freeman.

[3] Crawford E. and Veloso M. (2004), “Opportunities for Learning in
Multi-Agent Meeting Scheduling”, http://www.mgci.memphis.edu.

[4] Maes P. (1994), “Agents that Reduce Work and Information Overload”,
Communications of the ACM, Vol.37, No.7, pp. 31-40.

[5] Mitchell T., Caruana R., Dayne F., McDermott J. and Zabowski D.
(1994), “Experience with a Learning Personal Assistant”,
Communications of the ACM, Vol.37, No.7, pp. 80-91.

[6] Sen, S. and Durfee E.H. (1991), “A Formal Study of Distributed
Meeting Scheduling: Preliminary Results”, Proceedings of the ACM
Conference on Organizational Computing Systems, pp. 55-68.

[7] Jeong W.S., Yun J.S. and Jo G.S. (1999), “Cooperation in Multi-Agent
System for Meeting Scheduling”, Proceedings of the IEEE TENCON,
pp. 832-835.

[8] Nilsson N.J. (1990), “Principles of Artificial Intelligence”, Narosa
Publishing House

[9] Rich E. and Knight K (1995), “Artificial Intelligence”, Tata McGraw-
Hill.

[10] Russell S.J. and Norvig P. (2004), “Artificial Intelligence - A Modern
Approach”, Second Edition, Pearson Education Series in Artificial
Intelligence.

[11] Ashir A., Joo K.H., Kinoshita T. and Shirotori N, (1997), “Multi-Agent
Based Decision Mechanism for Distributed Meeting Scheduling
System”, Proceedings of the International Conference on Parallel and
Distributed Systems, pp. 275-280.

[12] Ephrati E., Zlotkin G. and Rosenschein J.S. (1994), “A Non-
Manipulable Meeting Scheduling System”, Thirteenth International
Distributed Artificial Intelligence Workshop, pp. 105-125.

[13] Garrido L. and Sycara K. (1996), “Multi-Agent Meeting Scheduling:
Preliminary Experimental Results”, Proceedings of the First
International Conference on Multi-Agent Systems, pp. 95-102.

[14] Sen S. (1997), “Developing an Automated Distributed Meeting
Scheduler”, IEEE Expert, July/August, pp. 41-45.

M. Sugumaran received his M.Sc degree in mathematics from University of
Madras in 1986, M.Tech degree in computer science and data processing from
Indian Institute of Technology, Kharagpur, in 1991 and Ph.D in computer
science and engineering from Anna University, Chennai in 2008. He is a life
member of ISTE and CSI. He is currently working as Associate Professor in
the Department of Computer Science and Engineering at Pondicherry
Engineering College. His areas of interests include theoretical computer
science, analysis of algorithms, parallel and distributed computing, spatial-
temporal data and information security.

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1001-1006

1006

